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Exact solutions of thén+ 1)-dimensional sine-Gordon field equation are studied with help of those of the
cubic nonlinear Klein-Gordon fields. The mapping relations among the sine-Gordon field equation and the
cubic nonlinear Klein-Gordon fields are pure algebraic. By solving the cubic nonlinear Klein-Gordon equa-
tions, many new types of exact explicit solutions such as the periodic-periodic interaction waves, periodic-kink
interaction waves, periodic perturbed “snake” shape solitary waves, etc., are displayed both analytically and

graphically.
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[. INTRODUCTION equation is nonintegrable except for 1, some special types

) i i of soliton solutions, such as multiple lin@r plang kink
In the classical and quantum field theory, the S'ne'Gordogolutions, have been obtained by different methodg16

(SG _f|e|d_ IS _one_z_of the most important exa_mp[és_z]. The . some kinds of exact solutions of the nSG equation have been
SG field is significant not only because of its basic status Nioked with a sinale constrained cubic nonlinear Klein-
field theory but also because of its wide applications in al- 9

most all the branches of physics and other scientific fields. Golrdct);(CtZN(I;?) eqlutatlotn. t of i "
The (1+1)-dimensional SG equation first arose in a_ ' ¢ tradiional treatment of noniinear systems, one usu-

strictly mathematical context—in differential geometry in the ally studies .the mteract;lon behaviors [?n;ong soht(m;;ll-
theory of surfaces of constant curvatg). The Backlund (@Y Waves in respect that many methods can provigect

transformation for the SG equation was known before 18g£XPlicit multiple soliton (or solitary wave solutions. How-
[4]; the inverse scattering transformation has been given b§Ver, there are few works in the literature to study the inter-
Ablowitz et al. [5]. actions amongdelliptic) periodic waves and/or between the
The earliest physical example is the model of dislocationg€riodic waves and solitary waves because of the difficulties
in solids put forward by Frenkel and Kontorof@l. The SG  to find exact and explicitmultiple (elliptic) periodic wave
equation plays an important role in the theory of long Jo-solutions and/or periodic-solitary wave solutions though one
sephson junctiong7] and in the dynamics of quasi-one- knows a single solitary wave solution can be considered as a
dimensional ferromagnets with easy-plane anisotrpply  limit case of a single periodic wave solution.
Other physical applications of the SG equation have been Consequently, the first problem we try to treat in this pa-
made to liquid crystal9], spin waves in liquid heliuni10],  per is the following:Are there any exact explicit multiple
self-induced transparency of a two-level medium in nonlin-periodic wave solutions and periodic-solitary wave solutions
ear opticq 11], and the hydrodynamics and even as a modefor the nSG equation?
of hadrong12]. Recently, we have found that for high-dimensional inte-
It is also well known that the(1+1)-dimensional SG grable systems, there are much richer structures of the local-
model is equivalent to many other important systems—folized excitations and periodic wave solutions than in lower
instance, the Thirring model, the Coulomb gas system, theimensions thanks to the intrusion of some arbitrary lower
ferromagneticXY model, the @2) sigma model, etd.13]. dimensional arbitrary functionsl7]. Then the second ques-
Because of the wide applications of the SG model, searchtion we try to answer is the followingCan we find rich
ing for its exact solutions is of great importance and interestsolution structures (with arbitrary functions) for high-
Some properties and exact solutions for the SG field areimensional nonintegrable nonlinear systems like the nSG?

known in the literaturg¢14-16. The paper is organized as follows. In Sec. Il, we rewrite
The (n+1)-dimensional sine-GordomSG equation can and extend the mapping relation of special solutions between
be written as the nSG and the single constrained CNKG field. In Sec. Ill,

the mapping relation is extended to link some more special
m n m solutions of the nSG equation with two and three constrained
O® + — singd = >, &, - $y+—singb=0, (1) coupled and noncoupled CNKG fields. Some concrete exact
g =1 9 solutions such as the periodic-periodic, periodic-kink, and
periodic-periodic-kink interaction solutions are graphically
which has been also applied in almost all the branches displayed. The last section includes a short summary and
physics[2] especially fom=2 and 3 cases. Though the nSG some simple discussions.
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II. MAPPING RELATION AMONG SPECIAL SOLUTIONS
OF THE nSG AND THOSE OF ONE CONSTRAINED
CNKG FIELD

To find some special types of exact solutions of the nS
equation(1), many interesting results have been given by

various authors especially in 1+1 dimensi¢h4,15. In or-

der to find more exact solutions of Ed.), we try to establish
some mapping relations among the special solutions of the

nSG equatior(1) and the so-called CNKG equation bgp*
model:

O¢=2 byx~ bu=\d+ ud®. )

i=1

Theorem 11If ¢ is a solution of Eq.(2) with the con-
strained condition

T2=3 & - =+ p-me+ Lgd+ T+ m),
< Px 2 2772
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many conserved quantities for a nonlinear system with infi-
nitely many freedoms. For instance, for the nSG equation
there are some special integrable reductions—say, the simple

deduction

7=, pX + wst, (6)

i=1

®= @(61 T)r §= 2 kixi + oqt,
i=1

with
n

n n
2K -wi=1, X pi-wp=- 2 ki~ 010, =0,
i=1 i=1 i=1

(7)

solves the nSG equation via the well-known integrable 2SG
equation

m
Peg~ ()DTT+ E singe = 01 (8)

(3)  which is known to possess infinitely many conserved quan-
then tities.
For some types of exact solutions of the nSG equations
2 4 infinitely many free parameters can be included in some dif-
=T+ Ztaily, @«=0,+1,%+2,.... (4 y many free p

g g ' ferent ways: namelyj) by including anarbitrary function in
the constrained equation, for instance, changing the con-

is a solution of the nSG equatI((ﬂl) strained equation&) and (3) as

Proof. Substituting Eq(4) into the nSG equatiofil), we

have O¢p=F(¢), F arbitrary, (9
2 e, -8
Dé- T gVonm— =0 (¥ 2= (Z’ )+ 21- 67 (10

Let the functiong be a solution of the CNKG equatiqR); . , ) ) , , , )

Eq. (5) just becomes Eq3). Theorem 1 then is proved. (i) by |_nclud|ng a(bltrary funct_lons via solving the flx_ed
Equation(5) is completely equivalent to the original nSG constrained equation@ee details later for the constrained

equation. So when some of the special solutions of (B, CNKG system. _ _

are obtained, then the related solutions of the nSG equation AN eduivalent special case of theorem 1 with

immediately follow from Eq.(4). To get some special solu-

tions of Eq.(5), putting some constraints on the functigrs

necessary. Here, we selegts a solution of tha ¢* because  and various exact explicit solutions of the CNKG equation

the A ¢* model is quite familiar to many physicists and easier(2) with the constraint$3) and(11) can be found iff15].

to get some exact explicit solutions. Actually, some theorems Here we give a further quite general explicit solution

to find new exact solutions of some special constrainedwith an arbitrary function related to theorem 1:
CNKG equations and a long list solution table have been

m=pu—\ (11

given in[15]. 20w 4 |~ VWV
In theorem 1, two free parametexsand u have been e = e + g tan Vksn—k+ 1 (12
included. The different selections of the free parameters will
lead to different types of periodic wave solutions. In prin- where
ciple,_ i:ﬂfinitlely manyffrﬁg r;])(';(Ijr.amete_rs ciam be_inlclél_c:fed in _thle N N 12/ n
special solutions of high-dimensional partial differential
equationgPDE'’s). Mathematically, some types of special so- V= Z Koix; + a(; kii) (2 kOikli)t
lutions of a PDE may be integrated out along some suitable =t = =t
lower-dimensional characteristic manifold and then some n n
lower-dimensional arbitrary functions can be included in the + f(z KX + a\/E kiﬂ)
special solutions of the investigated model. Physically, the i=1 i=1
entrance of a free parameter into the solutions of a model =&+ (9, (13)

implies the existence of a symmetry or a conserved quantity
though the concrete meaning of the conserved quantity usu{¢) is an arbitrary function o€, and the free parameteks,
ally is not very clear because of the existence of infinitelyky;, (i=0,1,... n) are linked by(a®=1)
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n n n 2 n

m
22'@@‘(2 kOik1i> ‘RE kKi=0, (14
i=1 j=1 =1 i=1
while the constank is the modulus of the Jacobi elliptic
function sriz) =sn(z,k).

Corresponding to the solution of E(lL2), the solution of

the constraint CNKG equation reads

= \& sni\ss'm'\/

k+1' (15)

with the parameter selections

Imi(1+k2) > > (Koikojkaika; = K5KE))

i=1j=1

- (16)
(1+K)2> K,
i=1

M=N+m. (17)

The special solutiofil2) denotes some particular types of
resonant solutions of two traveling waves moving in the di-

rections which are perpendicular to the plareslines for
n=2):

n n
D kixi=0, X kox =0,
i=1 i=1

respectively.
If we take
1
f(§)=§\f‘§ +1, (18
then the solution(12) denotes a type of periodic-periodic

wave interaction solutions for the modullksﬁ 1. For this
type of solutions, in one regiof>1,\&+ 1~ ¢), one peri-

odic wave is dominant and can be approximately expressed

by
ar 4 - \|m(E3+&)
~ + — / =
O, = 9 +gtan \ksnik+1 , &1,

(19
while in another regiorié<0,|& <1,V&+1~-¢) the other

periodic wave becomes dominant with the approximate ex-

pression
O, ~ 27 et \s’ksnm, £<0, [¢>1.
g g k+1
(20)

Figure Xa) is a (2+1)-dimensional special structure of
this type of solution with the upper sign+* of Eq. (12) and
the parameter selections

CY:O, k112k02:w0:3, (1)1:5, k12:4,
m=g=ky;=1, k=0.9,

at timet=0.

(21)
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FIG. 1. (a) A typical periodic solitoff structure of the 2SG equa-
tion expressed by Eq12) with Eqgs.(18) and (21) att=0. (b) A
special two-kink-like solitoff solution which is a limit case @ for
the modulusk of the Jacobi elliptic functionk— 1. (c) A plot of the
functionp=®-®; where® is same asga) and®, is given by Eq.
(19) with Egs. (18) and (21) at t=0. (d) A plot of the functiong
=d-d, similar to (c). All the quantities used in this paper are set
to be dimensionless to fit possible different applications.

Whenk— 1, Eq.(12) with Eq. (18) tends to a two-solitoff
solution. A solitoff is defined as a half straight-line soliton
[18]. Figure 1b) shows the structure of a special two-solitoff

036604-3



LOU, HU, AND TANG PHYSICAL REVIEW E 71, 036604(2005

Theorem 2If ¢, and ¢, are solutions of the CNKG mod-
els

Odr=Niy + pads, Oepa=Noho + podby,  (23)

under the constraint conditions

(Vo)?=0i(br b0, (V)?=oldbr ),  (24)

and

(V) - (Vo) = El b1 b, ~ brda = G1o b1, b2,

(25

with g1(é1, $2) =01, Go( b1, b2) =0z, and g1y, o) =01-
being functions of ¢4, ¢,} and related by

hf(f2 = h2)m+ (h? + [ s (N + piu) (beg - a)
+ o dhua+ No) (b — ca)] + 2(bees — a)(bebf + h)gy
+2(b¢? - ca)(ch+ be; f)g, — 4hf(ab+c)g;,= 0, (26)
where
() f=a+bpid,, h= ¢ +cey,,

FIG. 2. (a) The periodic-periodic wave interaction structure of then
the 2SG equation expressed by EtR) with Egs.(22) and(21) at 20 h
t=0. (b) A periodic line kink soliton structure which is a limit case d=—"—+—tan? - a=0,%x1,+2, ..., (27
of (a) for k— 1. g g f

_ _ is a solution of nSG1).
solution expressed by EL2) with Eq. (18) and the param- Proof. Substituting Eq(27) into Eq. (1) yields
eter selections are the same as in &) except fork=1. > 2 _ ) 5
To display the correctness of the approximate expressionsf(f=h)m+ (h=+f9)[(begs — @)l + (b — ca)ll ]
(19 and(20), p=d-d, andg=D-d, are plotted in Figs. _ =N 2
1(c) and Xd), respectively. The flat parts of Figs(cl and 4nf(ab+c)(V ) - (V¢,) + 2(bc; — a) (Db, +h)

1(d) tell us that the expressiori49) and(20) are quite well Y (V)2 + 2bd2 = calch+bd H(Vd)2=0. (28
approximations of Eq(12) with Egs.(13) and(18) at their (V) (b1 ) #:10(V ) 28)
valid regions. Now substituting the constraint conditiof®3)—(25) into Eq.

The structures of the periodic traveling waves shown by(28) leads to the relatior{26) and then the theorem 2 is
Eq. (12 may be quite rich because of the existence of theproved. o _
arbitrary functionf(¢). For instance, Fig. (@) shows another To obtain some explicit solutions from theorem 2, we

particular periodic-periodic wave interaction structure by sehave to solve the coupled constraint syst@8)—25). Here
lecting the functionf(¢) as we introduce some further restrictions

f(&) =sin¢, (22) h1= Pr(Va(Xq, - X, 1) = hi(Vy),

29
while the other parameters are same as in Fig). 1 b= ds(Vo(Xg, ... XsD)) = (V) 29

Figure Zb) shows a straight-line kink soliton with a peri-
odic traveling wave deformation. The parameter and function
selections of Fig. () are same as those in FigaR except B2, =M+ gt c @R, = hdd+ E2ghecy,
that the modulusk is taken as the limiting valuk=1. ' 2 : 2

(30)
. MAPPING RELATION AMONG SPECIAL SOLUTIONS with V; andV, being arbitrary solutions of the simple con-
OF THE nSG AND THOSE OF TWO CONSTRAINED straint equations
CNKG FIELDS

DV]_ = DVz = (VVl) . (VVZ) =0,

In order to search for more exact solutions of the nSG (31)
equation, we may use two or more solutions of the CNKG (%V 2=G (%V 2=G
equations. By taking two special exact solutions of the . b 2 2
CNKG equations, we have the following. whereG,; andG, are constants.
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FIG. 3. (a) The periodic-periodic wave interaction solution ex- (©)
pressed by Eq45) with Egs.(42—(44) and the parameter selec- FIG. 4. (a) A plot of Eq. (47) with Egs. (49), (49), and(47) at
tions (46) at time t=0. (b) A plot of the potential energy density (=0, (b) The structure of the potential energy density=1
related to(a). -cogg®d) related to(a).

Under the constraint®9)—(31), theorem 2 is simplified to

n n
the following. V,=f (E KoiXi + w t) + 2 KgiX; + wat, (35
Theorem 3® expressed by Eq27) with the constraints 20 i=1 anee i=1 S
(29—31) is a solution of(1) iff (if and only if) either

n
N m A7 _
c=ab, a’=- ;l G,=0, G;= o C,= j I% ki iKj,i = 0j,0;,= = G168} 06,0~ 26,36} 3,
1 1 1 -
(32 (36)
j1,J2=0,1,2,3,
or
where
2C m(b?\, + o
a4:71, G:L:_ > 2( 2 MZ) 5 , B 0, |7&J’
M1 a“(Bua + b\ pg + (12 = DA, gj = 1, i=]
4 M2 ~ mbf(aZuy + A1) andfy(&;) andfy(&,) are arbitrary functions.
b= 27Cz 2= @23y + b\ iy + (p = DA, The solutions given by Eq27) with Egs.(29), (30), (33)
[or (32)], and (34)—(36) denote the interaction solutions of
(33 three or four traveling periodic or kink waves. Here are three
are satisfied. more special explicit examples {2+1) dimensions and3
In derivation of theorem 3, another situation +1) dimensions.
(a) If we take
)\g 2 M2 m — —
02:27/112, b :_)\721 G]_:Ou C;2:27)\2 (;Sl:anSr(Vl,nl), ¢2:\5n25r’(V2,n2), a:b:C:l,
(37)
has been ruled out because it is equivalent to the first case of
theorem 3.
= + + = + +
A special situation of theorem 3 reads Vizkxtlytot, Va=koxtloy+ ot (38)
Voot En:k t En: t 34 N==(1+n), w=2n, Cy=n,
= X + + X + wgt,
e i=1 e i=1 Ko + g A=-(1 +”§), M2=2n5, Cy=ny, (39
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Gi=IE+12- w2, Gy=ki+153- w3, (40) 2_ 12,12 m(n, - 1)2
Wy = - 1
202 (ny+ 1A+ 1) + (202 - 120, + 2)ny
wheren; andn, are the modulus of the Jacobi sn functions (42)
and wq, wy, Ky, Ky, 11, andl, are determined by
klk2 + |l|2 — Wiy = 0, (43)

m(n, — 1)?
(N + DHnZ+ 1)+ (23— 12n,+ 2)n, '

w2 =k +12 then a special2 + 1)-dimensional periodic-periodic wave so-
lution of Eq.(1) can be immediately read off from the second

(41) case of theorem 3:

Vny sn(kox + 11y + wgt,ng) + \ny Skox + Ly + wyt,ny)
1 +Vngng sn(kyx + Ly + wqt, Ny SkoX + oy + wot,Ny) -

27 4
d =——+ — arctan (44)
g g
Figure 3a) shows a special2+1)-dimensional structure of the two periodic waves expressed by(4).with Egs.
(41)—(43) and the parameter selections
9 10 207

a=ki=l,=w,=0, m=g=l1=1, n=n,=—, k=Z—, w=———, (45)
1=12= w3 g=h 1=M=75 K \ﬁ 1 /49749

att=0. Figure 3b) is a plot of the potential energy density=1-cogg®) related to Fig. &).
(b) A particular periodic-kink wave interaction solution for tk2+1)-dimensional sine-Gordof2SG equation possesses
the form

2 4 dn(kx + 11y + wit,K)tanhkox + Ly + wot) +a
d=2"+2 arctan N(kyX + 11y + w1t Ktanikox + 1oy + wt) , (46)
g g atanr(kzx + |2y+ (x)zt) + dn(le + Ily + Q)lt,k)
wherew;, w,, ki, ky, 11, andl, are determined by
212,12 2_12,2_M
wi=ki+ly,  w3=kg+15 2 (47)
kiko + 141, — w0, =0, (48)
while the modulusk of the Jacobi dn function and the constantemain free.
Figure 4a) is a plot of a concrete example of E@6) with Eqgs.(47) and (48) and the parameter selections
1 1 1 9 - 2
=0, ky=l;=m=g=1, k==, k=w,=———, a=—, =v2, k=-, 49
a 1=h g 2= 5 K=o 22-1 100 @17V 5 (49

att=0. Figure 4b) shows the structure of the potential energy denisityl —cogg®d) related to Fig. ).
(c) A particular multiple periodic wave interaction solution for tf&+1)-dimensional sine-Gordo(8SG equation pos-
sesses the form

-2 2
d= 2am + 4 arctan sn(fy(é) +kox,a™) + ?zb sn(fa(é) +kyy + wlt,bz) , (50)
g g a+b sn(f(€) +kox,a™) sn(f,(€) + Ky + wt,b%)
with f1(¢) andf,(&) being two arbitrary functions of,

£=IE - Wiy + 0z + kyt, (51)

while the five solution parameteks, k,, w4, a, andb have to satisfy two conditions

(@%-1)%3

k% = m + wi, (52)
ma’(b? - 1)2- ki (ab+ 1)+ (a+ b)?][(ab- 1)%+ (a- b)?] = 0. (53)

Actually, the mapping relations of this section can be extended more generally such that more CNKG fields can be used to
find more complicated periodic and kink interaction modes. Here we only write down a further sf@eeialdimensional
example
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_2am 4 atanhzn - c snké ny) —[d+b snké ny)tanh ] sn(é,n,)
bt g AN ¢ srké.np)tanhy + [b Sk ny) + d tanh] SnEny | (54

where From Fig. §b), one can see that a “snake” shape solitary
wave is perturbed by two periodic waves with different pe-
= \;wi_ p§x+ Py +agt, 7= “’19’2_ p1p2X+ oY + wot, r.iods but moving in the same direction, perpendicular to the
Vo? - p? line ¢=0.
(55

Ny, Ny, P1, P2, K, @and w4 are arbitrary constants ana, is

given by IV. SUMMARY AND DISCUSSION

_m(wf - pd) L P2y 56 In summary, by means of the special solutions of the
- 2p; Py (56 CNKG systems such as E() with Eq. (3) and Eq.(23)
with Egs.(24)—(26), a diversity of exact explicit solutions of
Figure 5 plots a particular periodic-kink wave expressed bythe nsSG systen{l) are obtained simply from some pure
Eq. (54) with Egs.(55) and(56) and algebraic mapping relationg) and (27).
a=-23, b=7, c=13, d=2, g=1, p,=0, It is known that for the(2+1)-dimensionall integrable
models, there are many more abundant localized structures
_4 _ B _ 2304 than in(1+ 1)-dimensional case because some types of arbi-
pi==, w;=3, k=3, m= , . . : - .
3 65 trary functions can be included in the explicit solution ex-
pression$19,20. Though the nSG equation is nonintegrable
1= S oNy=—, (570  unlessn=1, the localized structures may also be quite rich
1000 10 due to the existence of arbitrary functions—say, those in Eqgs.
att=0. Figure %a) is a direct plot of the fieldb of Eq. (54) (13 and(34(36). In this paper, some special types of ex-

while Fig. 5b) shows the structure of the potential energyplicit multiple wave interaction solutions including periodic-
densityh=1-cogg®). periodic waves, periodic-kink waves, and periodic-periodic-

kink waves are explicitly given both analytically and
graphically.

Even for two periodic interaction waves there may be
many kinds of patterns. In this paper, three kinds of
(2+1)-dimensional periodic-periodic patterns are explicitly
revealed. The first type of periodic-periodic wave solution
[Eqg. (12) with Egs.(13) and (18)] is the generalization of
two solitoff solutions. Though the multisolitoff solution has
been known in the literature for many2 +1)-dimensional
models, its elliptic generalization is first found in this paper.
The second type of periodic-periodic wave soluffig). (12)
with Egs.(13) and(22)] is a generalization of a single peri-
odic perturbed line soliton while the third type of periodic-
periodic wave solutiofEqg. (44) with Egs.(41)—<43)] is an
alternative generalization of a single nonperturbed straight-
line kink soliton solution.

For many(2+1)-dimensional and3+1)-dimensional in-
tegrable model$17] as well as some special types of high-
dimensional nonintegrable onga&l], there are some types of
localized excitations decaying in all directions such as dro-
mions and ring solitons, which, however, we still have not

w7

999 9

i
A
N,
(A

R
N
(0

n
i
{/

/
i

(b)

FIG. 5. (a) A plot of Eq. (55) with Egs.(56) and(57) att=0. (b)
The structure of the potential energy density relate¢hto
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yet found for the nSG system. Consequently, how to find thesolutions obtained here can be realized in some fields such as
localized solutions which decay in all directions should bethose listed in the Introduction.

studied further. Moreover, due to the wide applications of the
nSG equation in physics, it is more interesting to find some
possible applications of these exact solutions. However, lack- The authors are in debt to helpful discussions with Dr. Y.
ing theoretical studies and experiments related to the highchen and Dr. X. M. Qian. The work was supported by the
dimensional SG, we could not further say something aboulational Natural Science Foundations of ChirfBlos.
the real physical meanings of our exact solutions. We hop@0203001 and 1047505%nd the Natural Science Founda-
that in future experimental studies some kinds of exact wavéon of Zhejiang Province of China.
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