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I. INTRODUCTION

In the classical and quantum field theory, the sine-Gordon
sSGd field is one of the most important examplesf1,2g. The
SG field is significant not only because of its basic status in
field theory but also because of its wide applications in al-
most all the branches of physics and other scientific fields.

The s1+1d-dimensional SG equation first arose in a
strictly mathematical context—in differential geometry in the
theory of surfaces of constant curvaturef3g. The Bäcklund
transformation for the SG equation was known before 1882
f4g; the inverse scattering transformation has been given by
Ablowitz et al. f5g.

The earliest physical example is the model of dislocations
in solids put forward by Frenkel and Kontorovaf6g. The SG
equation plays an important role in the theory of long Jo-
sephson junctionsf7g and in the dynamics of quasi-one-
dimensional ferromagnets with easy-plane anisotropyf8g.
Other physical applications of the SG equation have been
made to liquid crystalsf9g, spin waves in liquid heliumf10g,
self-induced transparency of a two-level medium in nonlin-
ear opticsf11g, and the hydrodynamics and even as a model
of hadronsf12g.

It is also well known that thes1+1d-dimensional SG
model is equivalent to many other important systems—for
instance, the Thirring model, the Coulomb gas system, the
ferromagneticXY model, the Os2d sigma model, etc.f13g.

Because of the wide applications of the SG model, search-
ing for its exact solutions is of great importance and interest.
Some properties and exact solutions for the SG field are
known in the literaturef14–16g.

The sn+1d-dimensional sine-GordonsnSGd equation can
be written as

hF +
m

g
singF ; o

i=1

n

Fxixi
− Ftt +

m

g
singF = 0, s1d

which has been also applied in almost all the branches of
physicsf2g especially forn=2 and 3 cases. Though the nSG

equation is nonintegrable except forn=1, some special types
of soliton solutions, such as multiple linesor planed kink
solutions, have been obtained by different methods. Inf15g
some kinds of exact solutions of the nSG equation have been
linked with a single constrained cubic nonlinear Klein-
GordonsCNKGd equation.

In the traditional treatment of nonlinear systems, one usu-
ally studies the interaction behaviors among solitonssor soli-
tary wavesd in respect that many methods can provideexact
explicit multiple soliton sor solitary waved solutions. How-
ever, there are few works in the literature to study the inter-
actions amongsellipticd periodic waves and/or between the
periodic waves and solitary waves because of the difficulties
to find exact and explicitmultiple sellipticd periodic wave
solutions and/or periodic-solitary wave solutions though one
knows a single solitary wave solution can be considered as a
limit case of a single periodic wave solution.

Consequently, the first problem we try to treat in this pa-
per is the following:Are there any exact explicit multiple
periodic wave solutions and periodic-solitary wave solutions
for the nSG equation?

Recently, we have found that for high-dimensional inte-
grable systems, there are much richer structures of the local-
ized excitations and periodic wave solutions than in lower
dimensions thanks to the intrusion of some arbitrary lower
dimensional arbitrary functionsf17g. Then the second ques-
tion we try to answer is the following:Can we find rich
solution structures (with arbitrary functions) for high-
dimensional nonintegrable nonlinear systems like the nSG?

The paper is organized as follows. In Sec. II, we rewrite
and extend the mapping relation of special solutions between
the nSG and the single constrained CNKG field. In Sec. III,
the mapping relation is extended to link some more special
solutions of the nSG equation with two and three constrained
coupled and noncoupled CNKG fields. Some concrete exact
solutions such as the periodic-periodic, periodic-kink, and
periodic-periodic-kink interaction solutions are graphically
displayed. The last section includes a short summary and
some simple discussions.
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II. MAPPING RELATION AMONG SPECIAL SOLUTIONS
OF THE nSG AND THOSE OF ONE CONSTRAINED

CNKG FIELD

To find some special types of exact solutions of the nSG
equations1d, many interesting results have been given by
various authors especially in 1+1 dimensionsf14,15g. In or-
der to find more exact solutions of Eq.s1d, we try to establish
some mapping relations among the special solutions of the
nSG equations1d and the so-called CNKG equation orlf4

model:

hf ; o
i=1

n

fxixi
− ftt = lf + mf3. s2d

Theorem 1. If f is a solution of Eq.s2d with the con-
strained condition

s¹̃fd2 ; o
i=1

n

fxi

2 − ft
2 =

1

2
sl + m − mdf2 +

m

2
f4 +

1

2
sl + md,

s3d

then

F =
2ap

g
±

4

g
tan−1 f, a = 0, ± 1, ± 2, . . . , s4d

is a solution of the nSG equations1d.
Proof. Substituting Eq.s4d into the nSG equations1d, we

have

hf −
2f

1 + f2s¹̃fd2 + m
fs1 − f2d

1 + f2 = 0. s5d

Let the functionf be a solution of the CNKG equations2d;
Eq. s5d just becomes Eq.s3d. Theorem 1 then is proved.

Equations5d is completely equivalent to the original nSG
equation. So when some of the special solutions of Eq.s5d
are obtained, then the related solutions of the nSG equation
immediately follow from Eq.s4d. To get some special solu-
tions of Eq.s5d, putting some constraints on the functionf is
necessary. Here, we selectf as a solution of thelf4 because
thelf4 model is quite familiar to many physicists and easier
to get some exact explicit solutions. Actually, some theorems
to find new exact solutions of some special constrained
CNKG equations and a long list solution table have been
given in f15g.

In theorem 1, two free parametersl and m have been
included. The different selections of the free parameters will
lead to different types of periodic wave solutions. In prin-
ciple, infinitely many free parameters can be included in the
special solutions of high-dimensional partial differential
equationssPDE’sd. Mathematically, some types of special so-
lutions of a PDE may be integrated out along some suitable
lower-dimensional characteristic manifold and then some
lower-dimensional arbitrary functions can be included in the
special solutions of the investigated model. Physically, the
entrance of a free parameter into the solutions of a model
implies the existence of a symmetry or a conserved quantity
though the concrete meaning of the conserved quantity usu-
ally is not very clear because of the existence of infinitely

many conserved quantities for a nonlinear system with infi-
nitely many freedoms. For instance, for the nSG equation
there are some special integrable reductions—say, the simple
reduction

F = wsj,td, j = o
i=1

n

kixi + v1t, t = o
i=1

n

pixi + v2t, s6d

with

o
i=1

n

ki
2 − v1

2 = 1, o
i=1

n

pi
2 − v2

2 = − 1, o
i=1

n

kipi − v1v2 = 0,

s7d

solves the nSG equation via the well-known integrable 2SG
equation

wjj − wtt +
m

g
singw = 0, s8d

which is known to possess infinitely many conserved quan-
tities.

For some types of exact solutions of the nSG equations
infinitely many free parameters can be included in some dif-
ferent ways: namely,sid by including anarbitrary function in
the constrained equation, for instance, changing the con-
strained equationss2d and s3d as

hf = Fsfd, F arbitrary, s9d

s¹̃fd2 =
1 + f2

2f
Fsfd +

m

2
s1 − f2d; s10d

sii d by including arbitrary functions via solving the fixed
constrained equationsssee details later for the constrained
CNKG systemd.

An equivalent special case of theorem 1 with

m= m − l s11d

and various exact explicit solutions of the CNKG equation
s2d with the constraintss3d and s11d can be found inf15g.

Here we give a further quite general explicit solution
swith an arbitrary functiond related to theorem 1:

F =
2ap

g
±

4

g
tan−1 Îk sn

ÎumuV
k + 1

, s12d

where

V = o
i=1

n

k0ixi + aSo
i=1

n

k1i
2 D−1/2So

i=1

n

k0ik1iDt

+ fSo
i=1

n

k1ixi + aÎo
i=1

n

k1i
2 tD

; j0 + fsjd, s13d

fsjd is an arbitrary function ofj, and the free parametersk0i,
k1i , si =0,1, . . . ,nd are linked bysa2=1d
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o
i=1

n

o
j=1

n

k0i
2 k1j

2 − So
j=1

n

k0ik1iD2

−
m

umuoi=1

n

k1i
2 = 0, s14d

while the constantk is the modulus of the Jacobi elliptic
function snszd;snsz,kd.

Corresponding to the solution of Eq.s12d, the solution of
the constraint CNKG equation reads

f = Îk sn
ÎumuV
k + 1

, s15d

with the parameter selections

l =

umus1 + k2do
i=1

n

o
j=1

n

sk0ik0jk1ik1j − k0i
2 k1j

2 d

s1 + kd2o
i=1

n

k1i
2

, s16d

m = l + m. s17d

The special solutions12d denotes some particular types of
resonant solutions of two traveling waves moving in the di-
rections which are perpendicular to the planessor lines for
n=2d:

o
i=1

n

k1ixi = 0, o
i=1

n

k0ixi = 0,

respectively.
If we take

fsjd =
1

3
Îj2 + 1, s18d

then the solutions12d denotes a type of periodic-periodic
wave interaction solutions for the moduluskÞ1. For this
type of solutions, in one regionsj@1,Îj2+1<jd, one peri-
odic wave is dominant and can be approximately expressed
by

F1 <
2ap

g
±

4

g
tan−1 Îk sn

Îumusj/3 + j0d
k + 1

, j @ 1,

s19d

while in another regionsj,0,uju!1,Îj2+1<−jd the other
periodic wave becomes dominant with the approximate ex-
pression

F2 <
2ap

g
±

4

g
tan−1 Îk sn

Îumusj0 − j/3d
k + 1

, j , 0, uju @ 1.

s20d

Figure 1sad is a s2+1d-dimensional special structure of
this type of solution with the upper sign “1” of Eq. s12d and
the parameter selections

a = 0, k11 = k02 = v0 = 3, v1 = 5, k12 = 4,

m= g = k01 = 1, k = 0.9, s21d

at time t=0.

Whenk→1, Eq.s12d with Eq. s18d tends to a two-solitoff
solution. A solitoff is defined as a half straight-line soliton
f18g. Figure 1sbd shows the structure of a special two-solitoff

FIG. 1. sad A typical periodic solitoff structure of the 2SG equa-
tion expressed by Eq.s12d with Eqs. s18d and s21d at t=0. sbd A
special two-kink-like solitoff solution which is a limit case ofsad for
the modulusk of the Jacobi elliptic function:k→1. scd A plot of the
function p;F−F1 whereF is same assad andF1 is given by Eq.
s19d with Eqs. s18d and s21d at t=0. sdd A plot of the functionq
;F−F2 similar to scd. All the quantities used in this paper are set
to be dimensionless to fit possible different applications.
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solution expressed by Eq.s12d with Eq. s18d and the param-
eter selections are the same as in Eq.s21d except fork=1.

To display the correctness of the approximate expressions
s19d ands20d, p;F−F1 andq;F−F2 are plotted in Figs.
1scd and 1sdd, respectively. The flat parts of Figs. 1scd and
1sdd tell us that the expressionss19d and s20d are quite well
approximations of Eq.s12d with Eqs. s13d and s18d at their
valid regions.

The structures of the periodic traveling waves shown by
Eq. s12d may be quite rich because of the existence of the
arbitrary functionfsjd. For instance, Fig. 2sad shows another
particular periodic-periodic wave interaction structure by se-
lecting the functionfsjd as

fsjd = sinj, s22d

while the other parameters are same as in Fig. 1sad.
Figure 2sbd shows a straight-line kink soliton with a peri-

odic traveling wave deformation. The parameter and function
selections of Fig. 2sbd are same as those in Fig. 2sad except
that the modulusk is taken as the limiting valuek=1.

III. MAPPING RELATION AMONG SPECIAL SOLUTIONS
OF THE nSG AND THOSE OF TWO CONSTRAINED

CNKG FIELDS

In order to search for more exact solutions of the nSG
equation, we may use two or more solutions of the CNKG
equations. By taking two special exact solutions of the
CNKG equations, we have the following.

Theorem 2. If f1 andf2 are solutions of the CNKG mod-
els

hf1 = l1f1 + m1f1
3, hf2 = l2f2 + m2f2

3, s23d

under the constraint conditions

s¹̃f1d2 = g1sf1,f2d, s¹̃f2d2 = g2sf1,f2d, s24d

and

s=̃f1d · s=̃f2d ; o
i=1

n

f1xi
f2xi

− f1tf2t = g12sf1,f2d,

s25d

with g1sf1,f2d;g1, g2sf1,f2d;g2, and g12sf1,f2d;g12

being functions ofhf1,f2j and related by

hfsf2 − h2dm+ sh2 + f2dff1sl1 + f1
2m1dsbcf2

2 − ad

+ f2sf2
2m2 + l2dsbf1

2 − cadg + 2sbcf2
2 − adsbf2f + hdg1

+ 2sbf1
2 − cadsch+ bf1fdg2 − 4hfsab+ cdg12 = 0, s26d

where

f ; a + bf1f2, h ; f1 + cf2,

then

F =
2ap

g
±

4

g
tan−1 h

f
, a = 0, ± 1, ± 2, . . . , s27d

is a solution of nSGs1d.
Proof. Substituting Eq.s27d into Eq. s1d yields

hfsf2 − h2dm+ sh2 + f2dfsbcf2
2 − adhf1 + sbf1

2 − cadhf2g

− 4hfsab+ cds=̃f1d · s=̃f2d + 2sbcf2
2 − adsbf2 f + hd

3s¹̃f1d2 + 2sbf1
2 − cadsch+ bf1 fds¹̃f2d2 = 0. s28d

Now substituting the constraint conditionss23d–s25d into Eq.
s28d leads to the relations26d and then the theorem 2 is
proved.

To obtain some explicit solutions from theorem 2, we
have to solve the coupled constraint systems23d–s25d. Here
we introduce some further restrictions

f1 = f1„V1sx1, . . . ,xn,td… ; f1sV1d,
s29d

f2 = f2„V2sx1, . . . ,xn,td… ; f2sV2d,

f1V1

2 = l1f1
2 +

m1

2
f1

4 + C1, f2V2

2 = l2f2
2 +

m2

2
f2

4 + C2,

s30d

with V1 andV2 being arbitrary solutions of the simple con-
straint equations

hV1 = hV2 = s=̃V1d · s=̃V2d = 0,
s31d

s¹̃V1d2 = G1, s¹̃V2d2 = G2,

whereG1 andG2 are constants.

FIG. 2. sad The periodic-periodic wave interaction structure of
the 2SG equation expressed by Eq.s12d with Eqs.s22d and s21d at
t=0. sbd A periodic line kink soliton structure which is a limit case
of sad for k→1.
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Under the constraintss29d–s31d, theorem 2 is simplified to
the following.

Theorem 3. F expressed by Eq.s27d with the constraints
s29d–s31d is a solution ofs1d iff sif and only ifd either

c = ab, a2 = −
l1

m1
, G2 = 0, G1 =

m

2l1
, C1 =

l1
2

2m1

s32d

or

a4 =
2C1

m1
, G1 = −

msb2l2 + m2d
a2s3m2 + b2l2dm1 + sm2 − b2l2dl1

,

b4 =
m2

2C2
, G2 = −

mb2sa2m1 + l1d
a2s3m2 + b2l2dm1 + sm2 − b2l2dl1

,

s33d

are satisfied.
In derivation of theorem 3, another situation

C2 =
l2

2

2m2
, b2 = −

m2

l2
, G1 = 0, G2 =

m

2l2

has been ruled out because it is equivalent to the first case of
theorem 3.

A special situation of theorem 3 reads

V1 = f1So
i=1

n

k1ixi + v1tD + o
i=1

n

k0ixi + v0t, s34d

V2 = f2So
i=1

n

k2ixi + v2tD + o
i=1

n

k3ixi + v3t, s35d

o
i=1

n

kj1ikj2i − v j1
v j2

= − G1d j10d j20 − G2d j13d j23,

s36d
j1, j2 = 0,1,2,3,

where

di j = H0, i Þ j ,

1, i = j ,
J

and f1sj1d and f2sj2d are arbitrary functions.
The solutions given by Eq.s27d with Eqs.s29d, s30d, s33d

for s32dg, and s34d–s36d denote the interaction solutions of
three or four traveling periodic or kink waves. Here are three
more special explicit examples ins2+1d dimensions ands3
+1d dimensions.
sad If we take

f1 = În1 snsV1,n1d, f2 = În2 snsV2,n2d, a = b = c = 1,

s37d

V1 = k1x + l1y + v1t, V2 = k2x + l2y + v2t, s38d

l1 = − s1 + n1
2d, m1 = 2n1, C1 = n1,

l2 = − s1 + n2
2d, m2 = 2n2, C2 = n2, s39d

FIG. 3. sad The periodic-periodic wave interaction solution ex-
pressed by Eq.s45d with Eqs. s42d–s44d and the parameter selec-
tions s46d at time t=0. sbd A plot of the potential energy density
related tosad.

FIG. 4. sad A plot of Eq. s47d with Eqs. s48d, s49d, and s47d at
t=0. sbd The structure of the potential energy densityh;1
−cossgFd related tosad.
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G1 = k1
2 + l1

2 − v1
2, G2 = k2

2 + l2
2 − v2

2, s40d

wheren1 andn2 are the modulus of the Jacobi sn functions
andv1, v2, k1, k2, l1, and l2 are determined by

v1
2 = k1

2 + l1
2 −

msn2 − 1d2

sn2 + 1d2sn1
2 + 1d + s2n2

2 − 12n2 + 2dn1
,

s41d

v2
2 = k2

2 + l2
2 −

msn1 − 1d2

sn2 + 1d2sn1
2 + 1d + s2n2

2 − 12n2 + 2dn1
,

s42d

k1k2 + l1l2 − v1v2 = 0, s43d

then a specials2+1d-dimensional periodic-periodic wave so-
lution of Eq.s1d can be immediately read off from the second
case of theorem 3:

F =
2ap

g
±

4

g
arctan

În1 snsk1x + l1y + v1t,n1d + În2 snsk2x + l2y + v2t,n2d
1 +În1n2 snsk1x + l1y + v1t,n1dsnsk2x + l2y + v2t,n2d

. s44d

Figure 3sad shows a specials2+1d-dimensional structure of the two periodic waves expressed by Eq.s44d with Eqs.
s41d–s43d and the parameter selections

a = k1 = l2 = v2 = 0, m= g = l1 = 1, n1 = n2 =
9

10
, k2 =

10
Î721

, v1 =
207

Î49749
, s45d

at t=0. Figure 3sbd is a plot of the potential energy densityh;1−cossgFd related to Fig. 3sad.
sbd A particular periodic-kink wave interaction solution for thes2+1d-dimensional sine-Gordons2SGd equation possesses

the form

F =
2p

g
±

4

g
arctan

dnsk1x + l1y + v1t,kdtanhsk2x + l2y + v2td + a

a tanhsk2x + l2y + v2td + dnsk1x + l1y + v1t,kd
, s46d

wherev1, v2, k1, k2, l1, and l2 are determined by

v1
2 = k1

2 + l1
2, v2

2 = k2
2 + l2

2 −
m

4
, s47d

k1k2 + l1l2 − v1v2 = 0, s48d

while the modulusk of the Jacobi dn function and the constanta remain free.
Figure 4sad is a plot of a concrete example of Eq.s46d with Eqs.s47d and s48d and the parameter selections

a = 0, k1 = l1 = m= g = 1, k2 =
1

2
, k2 = v2 =

1

2

1
Î2 − 1

, a =
9

10
, v1 = Î2, k =

2

5
, s49d

at t=0. Figure 4sbd shows the structure of the potential energy densityh;1−cossgFd related to Fig. 4sad.
scd A particular multiple periodic wave interaction solution for thes3+1d-dimensional sine-Gordons3SGd equation pos-

sesses the form

F =
2ap

g
±

4

g
arctan

sn„f1sjd + k2x,a−2
… + ab sn„f2sjd + k1y + v1t,b

2
…

a + b sn„f1sjd + k2x,a−2
… sn„f2sjd + k1y + v1t,b

2
…

, s50d

with f1sjd and f2sjd being two arbitrary functions ofj,

j ; Îk1
2 − v1

2y + v1z+ k1t, s51d

while the five solution parametersk1, k2, v1, a, andb have to satisfy two conditions

k1
2 =

sa2 − 1d2k2
2

sb2 − 1d2a4 + v1
2, s52d

ma4sb2 − 1d2 − k2
2fsab+ 1d2 + sa + bd2gfsab− 1d2 + sa − bd2g = 0. s53d

Actually, the mapping relations of this section can be extended more generally such that more CNKG fields can be used to
find more complicated periodic and kink interaction modes. Here we only write down a further specials2+1d-dimensional
example
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F =
2ap

g
+

4

g
arctan

a tanhh − c snskj,n1d − fd + b snskj,n1dtanhhg snsj,n2d
− a + c snskj,n1dtanhh + fb snskj,n1d + d tanhhg snsj,n2d

, s54d

where

j = Îv1
2 − p1

2x + p1y + v1t, h =
v1v2 − p1p2

Îv1
2 − p1

2
x + p2y + v2t,

s55d

n1, n2, p1, p2, k, and v1 are arbitrary constants andv2 is
given by

v2 =
Îmsv1

2 − p1
2d

2p1
+

p2v1

p1
. s56d

Figure 5 plots a particular periodic-kink wave expressed by
Eq. s54d with Eqs.s55d and s56d and

a = − 23, b = 7, c = 13, d = 2, g = 1, p2 = 0,

p1 =
4

3
, v1 = 3, k = 3, m=

2304

65
,

n1 =
999

1000
, n2 =

9

10
, s57d

at t=0. Figure 5sad is a direct plot of the fieldF of Eq. s54d
while Fig. 5sbd shows the structure of the potential energy
densityh;1−cossgFd.

From Fig. 5sbd, one can see that a “snake” shape solitary
wave is perturbed by two periodic waves with different pe-
riods but moving in the same direction, perpendicular to the
line j=0.

IV. SUMMARY AND DISCUSSION

In summary, by means of the special solutions of the
CNKG systems such as Eq.s2d with Eq. s3d and Eq.s23d
with Eqs.s24d–s26d, a diversity of exact explicit solutions of
the nSG systems1d are obtained simply from some pure
algebraic mapping relationss4d and s27d.

It is known that for thes2+1d-dimensional integrable
models, there are many more abundant localized structures
than ins1+1d-dimensional case because some types of arbi-
trary functions can be included in the explicit solution ex-
pressionsf19,20g. Though the nSG equation is nonintegrable
unlessn=1, the localized structures may also be quite rich
due to the existence of arbitrary functions—say, those in Eqs.
s13d and s34d–s36d. In this paper, some special types of ex-
plicit multiple wave interaction solutions including periodic-
periodic waves, periodic-kink waves, and periodic-periodic-
kink waves are explicitly given both analytically and
graphically.

Even for two periodic interaction waves there may be
many kinds of patterns. In this paper, three kinds of
s2+1d-dimensional periodic-periodic patterns are explicitly
revealed. The first type of periodic-periodic wave solution
fEq. s12d with Eqs. s13d and s18dg is the generalization of
two solitoff solutions. Though the multisolitoff solution has
been known in the literature for manys2+1d-dimensional
models, its elliptic generalization is first found in this paper.
The second type of periodic-periodic wave solutionfEq. s12d
with Eqs.s13d and s22dg is a generalization of a single peri-
odic perturbed line soliton while the third type of periodic-
periodic wave solutionfEq. s44d with Eqs. s41d–s43dg is an
alternative generalization of a single nonperturbed straight-
line kink soliton solution.

For manys2+1d-dimensional ands3+1d-dimensional in-
tegrable modelsf17g as well as some special types of high-
dimensional nonintegrable onesf21g, there are some types of
localized excitations decaying in all directions such as dro-
mions and ring solitons, which, however, we still have not

FIG. 5. sad A plot of Eq. s55d with Eqs.s56d ands57d at t=0. sbd
The structure of the potential energy density related tosad.
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yet found for the nSG system. Consequently, how to find the
localized solutions which decay in all directions should be
studied further. Moreover, due to the wide applications of the
nSG equation in physics, it is more interesting to find some
possible applications of these exact solutions. However, lack-
ing theoretical studies and experiments related to the high-
dimensional SG, we could not further say something about
the real physical meanings of our exact solutions. We hope
that in future experimental studies some kinds of exact wave

solutions obtained here can be realized in some fields such as
those listed in the Introduction.
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